Fuzzy integral to speed up support vector machines training for pattern classification

نویسندگان

  • Hassiba Nemmour
  • Youcef Chibani
چکیده

The major drawback of Support Vector Machines (SVMs) consists of the training time, which is at least quadratic to the number of data. Among the multitude of approaches developed to alleviate this limitation, several research works showed that mixtures of experts can drastically reduce the runtime of SVMs. The mixture employs a set of SVMs each of which is trained on a sub-set of the original dataset while the final decision is evaluated throughout a gater. The present work proposes a new support vector mixture in which Sugeno’s fuzzy integral is used as a gater to remove the time complexity induced by conventional gaters such as artificial neural networks. Experiments conducted on standard datasets of optical character and face recognition reveal that the proposed approach gives a significant reduction of the runtime while keeping at least the same accuracy as the SVM trained over the whole dataset.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES

Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only  considers both accuracy and generalization criteria in a single objective fu...

متن کامل

Mining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM

Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...

متن کامل

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

A comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater

The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...

متن کامل

A Hierarchical and Parallel Method for Training Support Vector Machines

In order to handle large-scale pattern classification problems, various sequential and parallel classification methods have been developed according to the divide-and-conquer principle. However, existing sequential methods need long training time, and some of parallel methods lead to generalization accuracy decreasing and the number of support vectors increasing. In this paper, we propose a nov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • KES Journal

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2010